C.U.SHAH UNIVERSITY

Winter Examination-2018

Subject Name: Fundamental of Electrical Engineering

Subject Code: 4TE01FEE1
Semester: 1

Date: 30/11/2018

Branch: B.Tech (All)

Time: 02:30 To 05:30
Marks: 70
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1 Attempt the following questions:

1) Unit of charge is \qquad
A) Ampere
B) Coulomb
C) Joule
D) Volt
2) Resistance of metalic conductor is proportional to its length.
A) True
B) False
3) Unit of resistivity is \qquad
A) Weber
B) Ohm
C) Ohm-metre
D) Ohm/metre
4) The unit of permeability is \qquad .
A) Henry/Metre
B) Weber
C) Henry
D) Metre/ Henry
5) If the distance between the plate of capacitor incerases, its capacitance \qquad
A) Increases
B) Remains constant
C) Decreases
D) None of the above
6) Which one of the below is not a valid formula?
A) $V=\frac{Q}{C}$
B) $C=\frac{Q}{V}$
C) $Q=C V$
D) $C=\frac{V}{Q}$
7) The average value of a sine wave over a full cycle is \qquad .
A) 0.707
B) 0
C) 0.636
D) 0.318
8) The ratio of rms. value to average value is called peak factor.
A) True
B) False
9) If $e_{1}=A \sin \omega t$ and $e_{2}=B \sin (\omega t+\phi)$, then
A) e_{1} leads e_{2} by ϕ
B) e_{2} lags e_{1} by ϕ
C) e_{2} leads e_{1} by ϕ
D) e_{1} is in phase with e_{2}
10) In a purely inductive circuit, voltage across inductor leads the current by \qquad
A) 45°
B) 180°
C) 90°
D) 30°
11) The average power consumed by a purely capacitve circuit is zero.
A) True
B) False
12) In a balanced 3-phase star connected system, the equation for three phase power is given by \qquad
A) $V_{p h} I_{p h} \cos \phi$
B) $2 V_{p h} I_{p h} \cos \phi$
C) $3 V_{p h} I_{p h} \cos \phi$
D) $\sqrt{3} V_{p h} I_{p h} \cos \phi$
13) A transformer is a \qquad equipment.
A) Rotating
B) Static
C) Both rotating and static
D) None of the above
14) For a step down transformer, transformation ratio K is \qquad
A) >1
B) $=1$
C) $=0$
D) <1

Attempt any four questions from Q-2 to Q-8

Q-2

Attempt all questions

(a) Derive an expression of equivalent resistance for ' n ' number of resistances connected in series. Give the advantages of series connection.
(b) Explain the effect of temperature on the resistance of the following.
i) Pure metals
ii) Semiconductors
iii) Electrolytes
iv) Insulators

Q-3 Attempt all questions
(a) State Faraday's first law and second law electromagnetic induction. Derive the equation of induced emf $e=N \frac{d \phi}{d t}$. Where $\mathrm{N}=$ Number of turns in a coil, $\phi=$ flux in the coil.
(b) Give any seven comparisons between magnetic circuit and electrical circuit.

Q-4 Attempt all questions
(a) Define capacitance. Derive an expression of total capacitance for n number of capacitors when connected in parallel.
(b) Derive the expression for the energy $E=\frac{1}{2} C V^{2}$ stored in a charged capacitor.

Q-5 Attempt all questions

(a) Obtain an expression for the equivalent star network resistance for a given delta network.
(b) State and explain Ohm's law. Give its limitations.

Q-6 Attempt all questions

(a) Explain the following terms with diagrams for sinusoidal AC quantities.
i) In-phase
ii) Lagging
iii) Leading
(b) An alternating e.m.f. is represented by $\mathrm{e}=200 \sin 314 \mathrm{t}$ volt. Determine
i) Maximum value ii) Frequency in Hertz iii) Time Period iv) Angular Frequency

Q-7 Attempt all questions

(a) Explain the two wattmeter method for the measurement of power for a balanced three phase circuit.
(b) Derive the relationship between the voltage and current for purely resistive AC circuit. Draw the waveforms and phasor diagram for voltage and current.

Q-8 Attempt all questions
(a) Derive the emf equation $e=4.44 \mathrm{fN} \phi_{m}$ for a single phase transformer Where $\mathrm{f}=$ frequency of supply, $\mathrm{N}=$ number of turns either primary or secondary side, $\phi_{m}=$ maximum flux in the core.
(b) A single phase transformer has 400 primary turns 1000 secondary turns. The net cross-sectional area of the core is $60 \mathrm{~cm}^{2}$. If the primary winding to be connected to a 50 Hz supply at 520 V (rms), Calculate,
i) Peak value of the flux density in the core
ii) Voltage induced in the secondary winding.

